

UNIT 2

 71

Chapter 1

Algorithms and Flowcharts

After studying this lesson, the students will be able to

 understand the need of Algorithm and Flowcharts;

 solve problems by using algorithms and flowcharts;

 get clear idea about sequential, selection and iteration construct; and

 understand the finite- and infinite- loop.

Introduction

Algorithm is a step-by-step process of solving a well-defined computational problem. In

practice, in order to solve any complex real life problems, first we have to define the

problem and then, design algorithm to solve it. Writing and executing a simple

program may be easy; however, for executing a bigger one, each part of the program

must be well organized. In short, algorithms are used to simplify the program

implementation. The next step is making the flowchart. It is a type of diagram that

represents an algorithm or process, showing the steps as „boxes‟ of various kinds and

their order by connecting them with arrows. Then, the flowchart will be converted into

program code.

Algorithm

An algorithm is an effective method expressed as a finite list of well defined

instructions for calculating a function, starting from an initial state and initial input. The

instructions describe a computation, which will eventually produce output, when

executed. We can use algorithm to solve any kind of problems. However, before writing

a program, we need to write the steps to solve the problem in simple English language.

This step-by-step procedure to solve the problem is called algorithm.

Example

Let us take one simple day-to-day example by writing algorithm for making „Maggi

Noodles‟ as a food.

 72

 Step 1: Start

 Step 2: Take pan with water

 Step 3: Put pan on the burner

 Step 4: Switch on the gas/burner

 Step 5: Put magi and masala

 Step 6: Give two minutes to boil

 Step 7: Take off the pan

 Step 8: Take out the magi with the help of fork/spoon

 Step 9: Put the maggi on the plate and serve it

 Step 10: Stop.

Further, the way of execution of the program shall be categorized into three ways: (i)

sequence statements; (ii) selection statements; and (iii) iteration or looping statements.

This is also called as „control structure‟.

Sequence statements: In this program, all the instructions are executed one after

another.

Example

Write an algorithm to print „Good Morning‟.

 Step 1: Start

 Step 2: Print „Good Morning‟

 Step 3: Stop

Example

Write an algorithm to find area of a rectangle.

 Step 1: Start

 Step 2: Take length and breadth and store them as L and B?

 Step 3: Multiply by L and B and store it in area

 73

 Step 4: Print area

 Step 5: Stop

In the above mentioned two examples (Example II and III), all the instructions are

executed one after another. These examples are executed under sequential statement.

Selective Statements: In this program, some portion of the program is executed based

upon the conditional test. If the conditional test is true, compiler will execute some part

of the program, otherwise it will execute the other part of the program.

Example

Write an algorithm to check whether he is eligible to vote? (more than or equal to 18

years old).

 Step 1: Start

 Step 2: Take age and store it in age

 Step 3: Check age value, if age >= 18 then go to step 4 else step 5

 Step 4: Print “Eligible to vote” and go to step 6

 Step 5: Print “Not eligible to vote”

 Step 6: Stop

Example

Write an algorithm to check whether given number is +ve, -ve or zero.

 Step 1: Start

 Step 2: Take any number and store it in n.

 Step 3: Check n value, if n > 0 then go to step 5 else go to step 4

 Step 4: Check n value, if n < 0 then go to step 6 else go to step 7

 Step 5: Print “Given number is +ve” and go to step 8

 Step 6: Print “Given number is -ve” and go to step 8

 74

 Step 7: Print “Given number is zero”

 Step 8: Stop

In the above mentioned examples IV and V, all the statements are not executed, but

based upon the input, some portions of the algorithm are executed, because we have

„true‟ or „false‟ situation in the program.

Iterative statements: In some programs, certain set of statements are executed again

and again based upon conditional test. i.e. executed more than one time. This type of

execution is called „looping or iteration‟.

Example

Write an algorithm to print all natural numbers up to „n‟.

 Step 1: Start

 Step 2: Take any number and store it in n.

 Step 3: Store 1 in I

 Step 4: Check I value, if I<=n then go to step 5 else go to step 8

 Step 5: Print I

 Step 6: Increment I value by 1

 Step 5: Go to step 4

 Step 8: Stop

In the above example, steps 4, 5, 6 and 7 are executed more than one time.

Flowchart

In the previous section of this chapter, we have learnt to write algorithms, i.e. step-by-

step process of solving a problem. We can also show these steps in graphical form by

using some symbols. This is called flowcharting.

Flowchart Symbols

Some of the standard symbols along with respective function(s) that are used for

making flowchart are as follows:

 75

Symbols Functions

1.

Start/stop

2.

Input/output

3.

Processing

4.

Decision Box

5.

Flow of control

6.

Connector

The following flowchart is an example of a sequential execution.

Example

Draw a flowchart to find the simple interest. (Sequence)

 76

Solution:

The following flowchart is an example of a selective execution.

Example

Draw a flowchart to find bigger number among two numbers (selective)

Solution:

Start

Stop

Input A, B

Yes No

IS
A>B

Print “B is Big” Print “A is Big “

SI=P*R*T/100

Print SI

Stop

Start

Input P,R,T

 77

The following are the examples (VIII & IX) of an iterative execution.

Example

Draw a flow chart to find factorial of any number.

Solution:

Example

Draw a flow chart to find biggest number among „n‟ numbers.

I=1
F=1

Print F

Stop

Yes No

Start

Input N

Is I<=N

F=F*I
I=I+1

 78

Solution:

Finite and Infinite loop

In looping statements, if some set of statements are executed „n‟ times (fixed number of

times), then it is called „finite loop‟. At the same time, if some set of statements are

executed again and again without any end (infinite times), then it is called „infinite

loop‟. For example (X), if we are not incrementing „I‟ (index) value, then we will get

endless (infinite) loop. The following is an example of infinite loop.

Start

Input n

Input A

Is Big<A

Print Big

Stop

Yes

Yes

No

No

Is
I<=n

I=I+1

I=1
Big =A

Input A

Big=A
I=I+1

 79

Example

Draw a flow chart to print the number from 1 to ∞.

Solution:

In the above example “I” value is not at all incremented, so it will create endless loop.

This is also called infinite loop.

Note: Set of statements is executed again and again without any end is called infinite

loop.

Stop Print I

No Yes

Start

Input N

I=1

Is I<=N

 80

EXERCISE

Multiple choice questions:

1. A step by step method for solving a problem using English Language

 (a) program (b) Flowchart

 (c) statement (d) Algorithm

2. Set of statements is executed based upon conditional test.

 (a) Looping (b) Selective

 (c) Sequence (d) None

3. Set of statements is executed again and again based upon conditional test.

 (a) Looping (b) Selective

 (c) Sequence (d) None

4. The graphical representation of algorithm is

 (a) program (b) Flowchart

 (c) statement (d) Algorithm

5. All instructions are executed one after other.

 (a) Looping (b) Selective

 (c) Sequence (d) None

Answer the following questions.

1. Define Algorithm.

2. Define Flowchart.

3. Write an algorithm to find the sum of two numbers.

4. Write an algorithm to find the area of a triangle.

 81

5. Write an algorithm to find whether given number is odd or even.

6. Write an algorithm to find the sum of all even number up to given number.

7. Draw a flowchart to find the area of a circle.

9. Draw a flowchart to find the smallest number among n numbers.

10. Draw a flowchart to find the sum of all multiples of 5 up to given number.

11. Mona is confused about finite loop and infinite loop, explain her with the help of

example.

12. Write an algorithm and a flowchart to find sum of n numbers.

 82

Chapter 2

Programming Methodology

After studying this lesson, the students will be able to

 understand the need for good programs;

 understand how to solve problems using different ways;

 get clear idea about problem solving methodology; and

 understand the types of errors normally occur while writing programs.

Introduction

Learning to write computer program is very much like learning any skill. First, we

should understand the problems well and then try to solve it in a logical manner. For

example: We have read many books available in the market for describing the car

driving methods. However, we can learn driving once we actually get into the car and

start driving it. The same logic is applied in computer programming also. Computer

programming is the process of writing, testing, troubleshooting, debugging and

maintaining of a computer program.

An effective program is that which gives result of all different inputs, including wrong

input also. While creating program, we need to follow certain systematic approach. This

systematic approach comprises two steps/things, viz., program structure and program

representation. The program structure is implemented by using top-down or bottom-up

approach and is known as „popular approach‟, while the program representation plays

an important role in making the program more readable and understandable.

What is a Good Program?

A Good Program means that it should produce correct and faster results, taking into

account all the memory constraints. While making good program, we need to follow

certain guidelines of programming language for creating a successful program. The

following is the list of good programming habits that most people agree.

 83

Clarity and Simplicity of Expression

Expressions are used to implement a particular task. It is a combination of Operators,

Operands and Constants. Any expression used in the program should be understood by

the user. The followings are some of the points to be kept in mind while using

expressions in a program.

(i) Use library functions to make programs more powerful

 Example

 To find output = x6

 Output = X *X * X * X * X * X

 We can use output = power (X, 6)

(ii) Follow simplicity to maintain the clarity of expression

 Example

 X = A+B – U +VY

 A-B X+Y

 Then, we can write

 X1 = (A+B) / (A-B)

 X2 = (U+V*Y) / (X +Y)

 X = X1 –X2

(iii) Avoid program tricks usage, whose meaning is difficult to understand by the

user.

Use of proper names for identifiers

Identifiers are user defined names. They are used to name things. A name is associated

with a function or data object (constants and variables) and used to refer to that

function or data object. Identifiers are made up of letters (A-Z, a-z), digits (0-9), and the

underscore character (_). They, however, must begin with a letter or underscore and

not with a digit.

 84

(i) Give meaningful name for variable (data – object) and function.

 Example

 To calculate Area of a Square

 We use the variable names are Area and Side

 Area = Side * Side.

(ii) Use proper names for constants.

 Example

 ¶ = 3.14

 Give Pi = 3.14

(iii) Do not use same name like custom, customer or account, accountant.

(iv) Do not use one letter identifiers.

Comments

A comment is a programming language construct, which is used to embed

programmer-readable annotations in the source code of a computer program. Those

annotations are potentially significant to programmers but typically ignorable to

compilers and interpreters. Comments are usually added with the purpose of making

the source code easy to understand. Hence, add comments to your code in simple

English language that describes the function of the code and the reason for your

decision to do it in a particular way as well. They are generally categorized as either

„block comment‟ or „line comment‟. Block comment is implemented in python by “””

and “”” and line comment is implemented by #.

Example

"Write a program to print all numbers from 1 to 100 using while loop in python"

A = 1

while (a<100): # While statement

print a

 a = a+1

 85

Indentation

Leading white space (spaces and taps) at the beginning of each statement, which is used

to determine the group of statement, is known as „indentation‟.

Example

If A > B :

 print „A is Big‟ # Block1

else:

 print „B is Big‟ # Block2

In the above example, if statements are a type of code block. If the „if‟ expression

evaluates to true, then Block1 is executed, otherwise, it executes Block2. Obviously,

blocks can have multiple lines. As long as they are all indented with the same amount

of spaces, they constitute one block.

Characteristics of good programming

Every computer needs proper instruction set (programs) to perform the

required/assigned task. The quality of the program depends upon the instructions

given to it. However, it is required to feed/provide the proper and correct instructions

to the computer in order to yield/provide a correct and desired output. Hence, a

program should be developed to ensure proper functionality of the computer and also

should be easy to understand. A computer program should have some important

characteristics, which are as follows:

Flexibility

A program should be flexible enough to handle most of the changes without having to

rewrite the entire program. A flexible program is used to serve many purposes. For

example, CAD (Computer Aided Design) software is used for different purposes such

as; engineering drafting, printing circuit board layout and design, architectural design,

technical drawing, industrial art, etc. Most of the programs are being developed for

certain period and they need updation during the course of time.

http://en.wikipedia.org/wiki/Technical_drawing
http://en.wikipedia.org/wiki/Industrial_arts

 86

User Friendly

A program that can be easily understood by a beginner is called „user friendly‟. It must

interact with user through understandable messages. In addition, the proper message

for the user to input data and to display the result, besides making the program easily

understandable and modifiable.

Portability

Portability refers to the ability of an application to run on different platforms (operating

systems) with or without minimal changes. Since the change of platform is a common

phenomenon nowadays, due to the developments in hardware and the software,

portability has to be taken care of it. In case, a program is developed for a particular

platform, it would become obsolete after a certain period of time. At the same time, if a

program that is developed does have the ability to work on different platforms, it

makes software more useable. High language programs are often more portable than

assembly language programs.

Reliability

It is the ability of a program to do its intended function accurately even if there are even

small changes in the computer system. Moreover, the program must be able to handle

unexpected situation like wrong input or no input. The programs, which save such

ability are known as „reliable‟. For example, if the user does/gives wrong information to

input, it should display a proper error message.

Self-Documenting Code

The source code, which uses suitable name for the identifiers (variables and methods),

is called self-documenting code. Also, giving proper name for variables and methods

would tell the reader of your code clearly -what is it doing? Hence, a good program

must have a self-documenting code.

Problem solving process

The problem solving process starts with the problem specifications and ends with a

concrete (and correct) program. Programming means a problem solving activity, which

consists of four steps. They are;

 87

(i) Understanding the problem;

(ii) Devising a plan;

(iii) Executing the plan; and

(iv) Evaluation

Understanding the problem

The first step is to understand the problem well. It may be very difficult to understand

the problem but it is crucial. In general, one must find out the output from the given

data (input data) and assess the relationship between input and output data. It is also

important to verify whether the given information is sufficient to solve the problem or

not.

Devising a plan

It means drawing an action plan to solve the problem, once understood. A plan is

devised from data processing to the result according to the relationship that links both

of them. If the problem is trivial, this step will not require much thinking.

Executing the plan

Once the plan is defined, it should follow the plan of action completely and each

element of the plan should be checked as it is applied. In the course of execution, if any

part of the plan is found to be unsatisfactory, the plan should be revised.

Evaluation

Finally, the result should be examined in order to make sure that it is valid and that the

problem has been solved completely.

Problem solving methodology

As we all know, there are many methods/approaches available to solve a particular

problem. However, the efficient way is to adopt a systematic method of problem

solving. The use of systematic method of problem solving is crucial when we use a

computer to solve a problem. We introduce here a seven steps problem solving

method, which is closely related to the software life cycle (the various stages in the life

 88

of a program), that can be adapted by each person to solve the problem in their own

style. They are given as under:

1. Problem Definition

2. Problem Analysis

3. Design the problem

4. Coding

5. Program Testing and Debugging

6. Documentation

7. Program Maintenance

Problem Definition/Specification (Theme)

Computer programs are written to solve problems posed by humankind. Prior to

writing a program, one has to understand a description of the problem to solve. This

description may be very precise or vague, but nevertheless, it is necessary/present. For

instance, if you want to write a program to “Find the average of five numbers”, you

should ask yourself:

“What does average mean exactly?”

“How to calculate average value?”

Posing such questions compels you to define the problem very precisely. Once you are

sure of what the problem entails, you must write down a list of specifications.

Specifications are precise definitions of what the program must do. It must include the

following at least:

 Input: what data must be included as input and in which form?

 Output: what data must the program produce and in which form? (in order to

solve the problem)

Note: At the end of the problem definition step, you should have a list of

specifications.

 89

Problem Analysis

In this step, the problem has to be fragmented into smaller and manageable parts. The

original problem has to be analyzed and divided into a number of sub-problems as

these sub-problems are easier to solve and their solutions would become the

components of the final program. Each sub-problem is divided into further smaller ones

and this fragmentation has to be continued to achieve simple solutions. The use of

modular programming is to get proper solution.

Modular Programming: Modular Programming is the act of designing and writing

programs as functions (a large program is divided into the small individual

components) that each one performs, a single well-defined function, which has minimal

interaction between the sub-programs. It means that the content of each function is

cohesive and there is low coupling between them. There are two methods available for

modular programming. They are: top-down design and bottom-up design.

Top-Down design: The principles of top-down design dictate that a program should be

divided into a main module and its related module. Each module should also be

divided into sub modules according to software engineering and programming style.

The division continues till the module consists only of an elementary process that is

intrinsically understood and cannot be further sub-divided.

Bottom-up design: Bottom-up design is just the opposite of top-down design. It refers

to a style of programming, in which, an application is constructed with existing

primitives of the programming language and then gradually more and more

complicated features are added till applications are written. In other words, initiating

the design with simple modules and then build them into more complex structures

ending at the top is bottom-up design.

Designing the problem

Designing the problem can be expressed in the form of

 Algorithm

 Flowchart

Algorithm: An algorithm is a set of instructions that describe a method for solving a

problem. It is normally given in mix of computer code and English language. This is

often called „pseudo-code‟.

 90

Flowchart: The algorithm is represented in the form of a diagram with action boxes

linked by lines showing the order in which they are executed. This is known as „the

flow of control‟. It is the diagrammatic representation of an algorithm.

Coding

The process of translating the algorithm into syntax of a given language is known as

„Coding‟. Since algorithm cannot be executed directly by the computer, it has to be

translated into a programming language.

Program Testing and Debugging

Program Testing means running the program, executing all its instructions/ functions

and testing the logic by entering sample data in order to check the output. Debugging is

the process of finding and correcting the errors in the program code.

Type of errors: There are three types of errors generally occur during compilation and

running a program. They are (i) Syntax error; (ii) Logical error; and (iii) Runtime error.

Syntax error: Every programming language has its own rules and regulations (syntax).

If we overcome the particular language rules and regulations, the syntax error will

appear (i.e. an error of language resulting from code that does not conform to the syntax

of the programming language). It can be recognized during compilation time.

Example

 a = 0

 while a < 10

 a = a + 1

 print a

In the above statement, the second line is not correct. Since the while statement does not

end with „:‟. This will flash a syntax error.

Logical error: Programmer makes errors while writing program that is called „logical

error‟. It is an error in a program's source code that results in incorrect or unexpected

result. It is a type of runtime error that may simply produce the wrong output or may

cause a program to crash while running. The logical error might only be noticed during

runtime, because it is often hidden in the source code and are typically harder to find

and debug.

http://www.techterms.com/definition/sourcecode
http://www.techterms.com/definition/runtime_error
http://www.techterms.com/definition/output
http://www.techterms.com/definition/runtime
http://www.techterms.com/definition/debug

 91

 a = 100

 while a < 10:

 a = a + 1

 print a

In the above example, the while loop will not execute even a single time, because the

initial value of „a‟ is 100.

Runtime error: A runtime error is an error that causes abnormal termination of

program during running time. In general, the dividend is not a constant but might be a

number typed by you at runtime. In this case, division by zero is illogical. Computers

check for a "division by zero" error during program execution, so that you can get a

"division by zero" error message at runtime, which will stop your program abnormally.

This type of error is called runtime error.

Example

(a) A=10

 B=0

 print A/B

(b) During running time, if we try to open a file that does not exist in the hard disk,

then it will create runtime error.

Documentation

The documentation includes the problem definition, design documents, a description of

the test perform, a history of the program development and its different versions and a

user‟s manual. Such a manual is designed for a naive user and illustrates the

preparation of input data, running the program and obtaining & interpreting the

results.

Program maintenance

It is not directly part of the original implementation process, but needs special

emphasis. All activities that occur after a program operation are part of the program

maintenance. Many large programs have long life span that often exceed the lifetime of

 92

the hardware they run on. Usually, the expenditure for the program maintenance will

be more than the developmental cost of the program. The program maintenance

includes the following:

 Finding and eliminating previously undetected program errors;

 Modifying the current program, often to improve its performance, or to adapt to

new laws or government regulations, or to adapt to a new hardware, or to a new

operating system;

 Adding new features or a better user interface, or new capabilities to the program;

and

 Updating the documentation.

Maintenance is an important part of the life cycle of a program. It is also important as

far as documentation is concerned, since any change pertaining to a program will

require updating of internal as well as external documentation. Maintenance

documentation will include results of the program development steps, design

documents, program code and test information.

 93

EXERCISE

Multiple choice questions:

1. User Define name.

 (a) Identifier (b) constant

 (c) syntax (d) expression

 2. If we overcome the rules of the programming language, we get

 (a) Runtime error (b) Syntax error

 (c) logical error (d) None of the above.

3. Correcting the program code:

 (a) Testing (b) Syntax error

 (c) Runtime error (d) Debugging

4. Designing the problem

 (a) Testing (b) Debugging

 (c) logical error (d) Algorithm

5. Algorithm when translated into a programming language is called

 (a) Flowchart (b) Identifier

 (c) Code (d) Debugging

6. The program must be able to handle unexpected situation like wrong input or no

input.

 (a) Error (b) Expression

 (c) Portability (d) Reliability

7. Leading white space at the beginning of each statement, which is used to

determine the group of statement.

 (a) Testing (b) Indentation

 (c) Debugging (d) None of the above

 94

8. It refers to the ability of an application to run on different platforms with or

without minimal changes.

 (a) Error (b) Flexibility

 (c) Portability (d) Reliability

9. It is a combination of Operators, Operands and Constants.

 (a) Identifier (b) Expression

 (c) Syntax (d) Task

10. Each module should also be divided into sub modules according to software

engineering and programming style.

 (a) Top down method (b) Bottom up method

 (c) Coding (d) None of the above

Answer the following questions.

1. What is a good program?

2. What is an identifier?

3. How to write comments in a program?

4. What is the purpose of expression? Explain with an example.

5. Write and explain all steps of programming methodology.

6. Differentiate between runtime errors and logical errors.

7. Define documentation.

8. What is program maintenance?

9. Define modular programming.

10. Differentiate between top down and bottom up methods of modular

programming.

11. Explain types of errors with examples.

12. How to maintain programs?

 95

13. Write all steps of program methodology?

14. What do you mean by clarity and simplicity of expression?

15. What do you mean by flexibility?

16. Explain all steps of problem solving process.

17. What is indentation? Explain with an example.

18. What do you mean by debugging?

19. What is the use of self documenting code in programming?

20. What is the purpose of giving meaningful name for identifiers?

